Development of a reduced-order design/optimization tool for automotive engines using massively parallel computing

نویسندگان

  • Shashi M. Aithal
  • Stefan M. Wild
چکیده

Design and optimization of automotive engines present unique challenges on account of the large design space and conflicting constraints. A notable example of such a problem is optimizing the fuel consumption and reducing emissions over the drive cycle of an automotive engine. There are over twenty design variables (including operating conditions and geometry) for the abovementioned problem. Conducting design, analyses, and optimization studies over such a large parametric space presents a serious computational challenge. The large design parameter space precludes the use of detailed numerical or experimental investigations. Physics-based reduced-order models can be used effectively in the design and optimization of such problems. Since a typical drive cycle is represented by 1500 to 2000 sample data points (engine cycles), it is essential to develop fast and robust computations so that the entire engine cycle computation is done close to real-time speeds (on the order of 100-150 milliseconds). Harnessing the power of high-performance computing, it is possible to perform optimization of automotive drive cycles using massively parallel computations. In this work, we discuss the development of a parallel fast and robust reduced-order modeling tool to compute integrated quantities such as fuel consumption and emissions (NO and CO) over a range of engine drive cycles. As an illustrative example, we perform a massively parallel simulation consisting of 4096 synthetic drive cycles, representative of a fleet of cars. The impact of parameters such as humidity, initial cylinder pressure, inlet air temperature, and residual gas fraction on the performance and emission are presented.

منابع مشابه

Concept design of Vehicle Structure for the purpose of computing torsional and bending stiffness

Automotive design engineers face the challenging problem of developing products in highly competitive markets. In this regard, using conceptual models in the first step of automotive development seems so necessary. In this paper, to make a body in white conceptual model, an engineering approach is developed for the replacement of beam-like structures, joints, and panels in a vehicle model. The ...

متن کامل

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

AN EFFICIENT OPTIMIZATION PROCEDURE BASED ON CUCKOO SEARCH ALGORITHM FOR PRACTICAL DESIGN OF STEEL STRUCTURES

Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen he...

متن کامل

Performance Analysis of Different Modified MR Engines Mounts

Increasing current vehicle development trends for small, light, front wheel drive vehicles with low idle speeds have been forced automotive industries to use hydraulic engine mounts for further improvement in vibration, noise and harshness (NVH) performance of the vehicles. However, with the development of modern vehicle designs such as hybrid vehicles and variable engine management systems whi...

متن کامل

Large-Scale Reliability Based Design Optimization For Vehicle Crash Safety

The focus of this paper is on a large-scale reliability based design optimization of a car body structure for crash safety. The application of multidisciplinary design optimization (MDO) to automotive vehicle structure design has been an interest topic over the past several years (Yang et al. 1994, Schramm et al. 1999). Sobieski et al. (2000) and Kodiyalam et al. (2001) reported a method with v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015